Warped product submanifolds of cosymplectic manifolds
نویسندگان
چکیده
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000: 53C40, 53B25.
منابع مشابه
Warped Product Cr-submanifolds of Lp-cosymplectic Manifolds
In this paper, we study warped product CR-submanifolds of LP-cosymplectic manifolds. We have shown that the warped product of the type M = NT × fN⊥ does not exist, where NT and N⊥ are invariant and anti-invariant submanifolds of an LP-cosymplectic manifold M̄ , respectively. Also, we have obtained a characterization result for a CR-submanifold to be locally a CRwarped product.
متن کاملA Geometric Inequality for Warped Product Semi-slant Submanifolds of Nearly Cosymplectic Manifolds
Recently, we have shown that there do not exist warped product semi-slant submanifolds of cosymplectic manifolds [K.A. Khan, V.A. Khan and Siraj Uddin, Balkan J. Geom. Appl. 13 (2008), 55–65]. The nearly cosymplectic structure generalizes the cosymplectic one. Therefore the nearly Kaehler structure generalizes the Kaehler structure in almost Hermitian setting. It is interesting that the warped ...
متن کاملCharacterization of Gcr-lightlike Warped Product of Indefinite Cosymplectic Manifolds
In this paper we prove that there do not exist warped product GCR-lightlike submanifolds in the form M = N⊥ ×λ NT such that N⊥ is an anti-invariant submanifold tangent to V and NT an invariant submanifold of M̄ , other than GCR-lightlike product in an indefinite cosymplectic manifold. We also obtain some characterizations for a GCR-lightlike submanifold to be locally a GCR-lightlike warped produ...
متن کاملStatistical cosymplectic manifolds and their submanifolds
In this paper, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...
متن کاملOn GCR-Lightlike Product of Indefinite Cosymplectic Manifolds
Copyright q 2012 Varun Jain et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We define GCR-lightlike submanifolds of indefinite cosymplectic manifolds and give an example. Then, we study mixed geodesic GCR-lightlike submanif...
متن کامل